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Abstract

Concentrations of Ag, AI, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn were determined in six sediment cores from San
Francisco Bay (SFB) and one sediment core in Tomales Bay (TB), a reference estuary. SFB cores were collected from
between the head of the estuary and its mouth (Grizzly Bay, GB; San Pablo Bay, SP; Central Bay, CB; Richardson Bay, RB,
respectively) and ranged in length from 150 to 250 cm. Concentrations of Cr, V and Ni are greater than mean crustal content
in SFB and TB sediments, and greater than found in many other coastal sediments. However, erosion of ultramafic rock
formations in the watershed appears to be the predominant source. Baseline concentrations of other metals were determined
fxom horizons deposited before sediments were influenced by human activities and by comparing concentrations to those in
TB. Baseline concentrations of Cu co-varied with A1 in the SFB sediments and ranged from 23.7 5:!.2 ~g/g to 41.4 ± 2.4
p,g/go Baseline concentrations of other metals were less variable: Ag, 0.09 5:0.02 ~g/g; Pb, 5.2 ± 0.7 ~g/g; Hg,
0.06 5:0.01 ~,g/g; Zn, 78 5:7 ~g/g. The earliest anthropogenic influence on metal concentrations appeared as Hg
contamination (0.3-0.4 ~g/g) in sediments deposited at SP between 1850 and 1880, apparently associated with debris from
hydraulic gold mining. Maximum concentrations of Hg within the cores were 20 times baseline. Greater inventories of Hg at
SP and GB than at RB verified the importance of mining in the watershed as a source. Enrichment of Ag, Pb, Cu and Zn
first appeared after 1910 in the RB core, later than is observed in Europe or eastem North America. Maximum
concentrations of Ag and Pb were 5-l0 times baseline and Cu and Zn concentrations were less than three times baseline.
Large inventories of Pb to the sediments in the GB and SP cores appeared to be the result of the proximity to a large Pb
smelter. Inventories of Pb at RB are similar to those typical of atmospheric inputs, although influence from the Pb smelter is
also suspected. Concentrations of Hg and Pb have decreased since the 1970s (to 0.30 g.g/g and 25 t~g/g, respectively) and
were similar among all cores in 1990. Early Ag contamination was perhaps a byproduct of the Pb smelting process, but a
modem source of Ag is also indicated, especially at RB and CB. © 1999 Elsevier Science B.V. All rights reserved.
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I. Introduction human activities could have affected metal contami-
nation (van Geen and Luoma, 1999). Between 1850

Human activities have accelerated cycling andand 1900, most of the mercury mining in the world
increased metal deliveries to estuaries. Because manyoccurred in the watershed of San Francisco Bay
metals are toxic to aquatic life in minute quantities,(Nfiagu, 1994). Hydraulic mining for gold mobilized
changes in loadings or concentrations could have sediments and spread Hg contamination. Activities in ~.
ecosystem-wide implications. It is therefore impor-the Shasta mining district resulted in Cu, Cd, and Zn
tam to understand how anthropogenic activities contamination. Between the 1930s and 1970, dams,
change the concentrations of potentially toxic metals,reservoirs and canals were constructed to manage
what processes affect such change, and which activi-and divert the Sacramento and San Joaquin Rivers
ties have the greatest effects, for agricultural and urban uses. Water management

Most metals associate with the surfaces of patti-changed sediment transport (Peterson et al., 1993)
cles. They are preferentially transported, depositedand hydrodynamic processes that affect the fate of
and eventually buried with fine grained sediments, metals within the Bay. Modern industries Fn’st ap-
Carefully dated cores through sediment deposits canpeared on the shores of the Bay near the turn of the
provide chronologies of metal concentration or input century, about the same time that metal usage in- I
in areas of net sediment deposition (e.g., Nriagu etcreased in the rest of the country (Christensen and
al., 1982; Christensen and Goetz, 1987). On the westGoetz, 1987). Like elsewhere, rotes of urbanization
coast of North America, cores have been studied inand industrialization increased after World War II. 3~
coastal sediments of Southern California (BertineOil refineries (sources of Ni and V) and chemical
and Goldberg, 1977; Finney and Huh, 1989; Huh,plants remain important sources of waste discharge
1996) and central Puget Sound (Bloom and Cre-to the Bay; but industries, like the large Selby lead
celius, 1987). But the history of contamination insmelter near San Pablo Bay, have ceased operation
one of the largest estuaries on the West Coast, San(Rabinowitz and Wetherill, 1972). Since 1970, ex-
Francisco Bay, has not been studied. In coastaltensive investments in advanced waste water treat-
ecosystems, core chronologies are typically restrictedment have occurred, that could effectively remove
to environments where sediment resuspension andmetals. The sum of all metal loadings to the Bay
bioturbation are minimal. Many of these environ- were estimated to be 993 T/yr in 1960. In !986 they
ments are anoxic and abiotic (Goldberg et al., 1978;were 171 T/yr (Monroe and Kelly, 1992). Unlike
Valette-Silver et al., 1993; Owens and Cornwell,coastal systems where a single large input of wastes
1994). Less is known about the fate of metals in thedominate metal loadings and natural influences on Tom~
oxic, biologically rich and well mixed sedimentssediment deposition can be readily defined (Bloom Franc
typical of estuaries like San Francisco Bay. Here weand Crecelius, 1987; Huh, 1996), a changing array of baniz
present metal chronologies from dated cores fromhydrobiogeochemical influences and human activi- mine
several locations in that Bay. Our goal is to deter- ties could have influenced metals in San Francisco cisco
mine how geology, dynamic hydrobiogeochemical Bay sediments. The ecosystem response is likely to regio~
processes and changing human activities have influ- be complex, and it has not been documented. Fries ~
enced metal concentrations in Bay sediments. We conce
also establish the concentrations of metals that char- depthl
actefized Bay sediments before human activities and2. Methods depos
describe how modern sediments are responding to betwe
improvements in waste treatment. 2.I. Sample locations ates, i

The geology of the Bay watershed contains rain- Co
eral deposits and ultramafic rocks that are naturally Preliminary analyses of 0.6 N HCl-extractable Richa
enriched in metals relative to the mean compositionmetals were conducted on 14 cores from a group of baym~
of the continental crust. Interpretation of human 273 gravity cores collected in 1990 and 1991 (Fig. 1; ship t
influences requires understanding this natural base- Table 1). Detailed analyses were conducted on six of War
line of metal concentrations. A variety of specific the 14 cores and, for comparison, on one core from sourc~
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All gravity cores were collected from the ’RV
Tomales Bay. Tomales Bay is 45 km north of San David Johnston’ using a corer with a 363-kg weight
Francisco Bay and is neither industrialized nor ur-sound. The cores were 9 cm in diameter and ranged

:" banized, although there is a small, inactive mercuryfrom 0.5-2.5 m in length. The core barrel was steel,
mine in its watershed. The six cores from San Fran- with a polybutyrate liner. In addition to the 1990-

~ cisco Bay included replicate cores from two major 1991 sampling, a gravity core and box core were
3 regions of the Bay. All six had bimodal depth pro- obtained from the mouth of Richardson Bay in Au-

files of HCl-extractable metal concentrations (higher gust, 1992 (RB92-3) (Fuller et al., 1999). Compari-
concentrations in the near surface sediments than atson of isotope profiles (Fuller et al., 1999) and
depth) and were from locations of net sedimentorganic contaminant distributions (Venkatesan et al.,
deposition, as indicated by differences in bathymetry1999) between the box core and the surface sedi-
between 1955 and 1990 (Ogden Beeman and Associ-ments of the gravity core verified that no significant
ates, 1992). loss of surface materials or distortion of surface

Core RB92-3 was collected at the mouth of profiles occurred during gravity coring (Cmsius and
~le Richardson Bay, a 2-kin wide, wind-protected era- Anderson, 1991). The core from Tomales Bay was
of bayment near the mouth of San Francisco Bay. A collected in 1993 using a diver-operated piston corer
1; ship building facility was operational during World (Sansone et al., 1994).
of War II within Richardson Bay; otherwise local After collection, the cores were X-rayed, split into
om sources of contaminants are minimal. Richardsona working half and an archive half and stored in a
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Table I
List of all core locations, dates of collection mad types of data collected for each core

Location/ Map Latitude Longitude Length Collection Isotope Digest Grain size
USGS identifier Number (era) date dating technique analyzed
Grizzly Bay
SFB020190-6      * GBg0-6 38°6.06’ 122°1.58’ 205 1990 X HNO
SFB020190-9 - 3805.39’ 12203.83’ 76 1990 - HC1 < 64

San Pablo Bay
SFB020790-2     SP90-2 38°2.41’ 122°16.71’ 190 1990 HNO
SFB020790-8 * SP90-8 38°2.02’ 122°19.57, 240 1990 X HNO3; HF < 64 p-m; Bulk

Petaluma River
SFB020690-12 - 38°8.44’ 122031.04’ 240 1990 - HCI < 64

Central Bay
SFB020890-3 - 37058.29‘ 122°26.86’ 190 1990 - HC1 < 64
SFB020890-6 - 37°57.61, 122027.33’ 232 1990 - HC1 < 64
SFB020890-9 - 37055.43’ 122028.39’ 245 1990 - HC1 < 64 ~m
SFB020990-9 CB90-9 37°53.30’ 122023.65’ 130 1990 - HNO3 < 64 Izrn
SFB020890-11 - 37°54.33’ 122027.60’ 145 1990 - HC1 < 64
SFB020990-12 * CB90-12 37%1.41’ 122021.54’ 204 1990 X HNO3; HI~ < 64 ~m; Bulk

Richardson Bay
SP’B082092-3 * RB92-3 37°51.38’ 122028.20’ 150 1992 X HNO3; ~ < 64 g.m; Bulk

South Bay
10-G-25 - 37032.67’ 122°11.15’ 180 1990 - HC1 < 64 ~zna
SFB022190-2 - 37~29.84’ 122°5.55, 173 1990 - HC1 < 64

Tomales Bay
TB93-1 - 38010’ 122°54’ 320 1993 X HNO3; I-IF < 64 Ixm; Bulk

Primary core locations are marked with an asterisk. Metal ana!ysis for HC1 extracts include A1, Cr, Cu, Fe, Mn, Pb, V, Zrt. Metal analysis
for HNO3 and HF digests include the same elements as the HCI extracts, with the addition of Ag and Hg. Isotope dating on cores marked
with an X were dated by ~37Cs. Additional dating techniques for RB92-3 and SP90-8 included "~1°Pb, 239pi1, 240t~1, 234Th and l°Be.

cold room (2-3°C) until sampling. Sand/silt ratio 0.5 g sediment aliquots were digested at room tern-
was determined on all samples. Sediment samplesperature for 2 h in 0.6 N HC1. The sample was
were wet-sieved using an acid-cleaned nylon-meshfiltered with a 0.45 g,m filter and analyzed by l.nduc-
screen into a tared 100 ml beaker to < 64 g,m intively Coupled Argon Plasma Emission Spec-
ultra-clean deionized water and dried at 70°C. troscopy (ICAPES). For near-total metal analyses,

The < 64 Izm sediments were analyzed for met- replicate sub-samples from each horizon and proce-
als in all cores (these are the data reported here,dural blanks, were digested using the concentrated
unless otherwise noted); bulk analyses were con-nitric acid reflux method described by Luoma and
ducted on selected samples (see Table l). SievingBryan (!.981). Sediment aliquots of approximately
effectively reduces the most important grain size 0.5 g were placed into 22 ml scintillation vials. Ten
biases that can affect comparisons (Salomons andmilliliters of concentrated trace metal grade nitric
Forstner, 1984; Luoma, 1990). Each sediment sam-acid was added to each, a reflux bulb was placed on
pie was homogenized using a mortar and pestle, splitthe vial and the sample was left at room temperature
into 0.5 g replicate aliquots, and placed into a scintil- overnight. Samples were then refluxed at 150°C for
lation vial. For the weak-acid digest, two replicate approximately 1 week, until clear. Reflux bulbs were
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removed and the samples were evaporated to dry-replicate values of a solution were of low precision
ness. The residue was reconstituted in 0.6 N trace(relative standard deviation > 10%), the readings
metal grade hydrochloric acid, then filtered through were not used.

~ 0.45 p.m filters. Decomposition with concentrated Recoveries from standard reference materiads
nitric acid reflux is comparable with procedures pre-(SRM Sediment Standard 1646 and 2709) are re-
viously employed on Bay sediments (San Francisco ported in Table 2. Because Pb analyses by ICAPES
Estuary Institute, 1994). It is indicative of metals had an uncorrectable bias from A1, Pb (HNO3 digest)
sufficiently mobile to be of potential toxicological was analyzed by A_AS. Recoveries of Pb from SRM
interest, but it has the disadvantage of not providing 2709 were low in HNO3. As a second test of recov-
a complete dissolution of the sediment, cries, Pb in selected horizons of core sediments were

Total decomposition was conducted on a full suite analyzed by both AAS (HNO3 digest) and isotope
of samples from RB92-3, SP90-8 and on selecteddilution by mass spectrometry of totally decomposed
samples from CB90-12 in order to compare trends tosediments. These two methods compared within 5%
those observed by near total decomposition (see in both uncontaminated and contaminated horizons,
Table 1). Around 1 rnl of concentrated HC104 and 2suggesting a high fraction of Pb recovery in San
rnl of concentrated HF were added to sub-samples ofFrancisco Bay sediment.
0.2 g, with selected replicates, in a Teflon vial. The
samples were placed on an aluminum heat block2.3. Dating
preset at 110°C, and taken to dryness. About 1 rnl of
HCLO4 was added and then ultra-clean deionized Analyses of 137Cs, ~-~°Pb, 239’24°pu, 234Th, were

: water added to bring the Teflon vial to half full. conducted on cores RB92-3 and SP90-8 to derive
Samples were returned to the hot plate for evapora-chronologies (Table 1; Fuller et al., 1999). Addi-
tion, cooled and reconstituted to 10 rnl in 0.6 N HC1.tional analyses of 1°Be constrained early human
The vials were capped and heated at 90°C for 1 h. activities on each core and ~4C was used to identify

Samples for Hg analyses were reacted at 100°C inthe oldest sediments in RB92-3 (van Geen and Lu-
~ aqua regia followed by 10% nitric/dichromate re- oma, 1999). Sediments in RB92-3 appeared to be

constitution; 3% NaBH4 (in 1% NaOH) was added continuously deposited since well before significant
alysis as a reductant before analysis by cold vapor AAAS. anthropogenic activity began in the watershed (van
arked Concentrations of A1, Cr, Cu, Fe, Mn, Ni, V and Geen and Luoma, 1999). The Linear sedimentation

Zn in the sediment were analyzed by ICAPES, afterrate at the surface of RB92-3 was 0.89 cm/yr and
careful correction for peak interferences in the sedi- the core was vertically mixed to 33 cm depth (Fuller
ment digest matrix. Concentrations of Ag were ana-et al., 1999). Dates of sediment deposition were
lyzed by Graphite Furnace Atomic Absorption Spec- determined by numerical simulation of 2~°Pb pro-

tern- troscopy (GFAAS) using Zeeman background cor- files. The dates on individual horizons are the mini-
was rection with caLibration by the method of standard mum age of sediments at that depth. The deposition

duc- additions. Lead concentrations were analyzed byrate in SP90-8 averaged 4.1 cm/yr based on ~37Cs
lpec- flame AAS. and 239"24°pu activity maxima and 2~°Pb profiles.
yses, The ICAPES was profiled and standardized ac-Profiles of ~37Cs were also determined in three addi-
.-oce- cording to normal operating procedures, then a qual- tional cores (see Table 1), in order to estimate the
rated ity control (QC) standard was run every 10-15depth of sediment deposition since 1952 +2 (Table
and samples to ensure consistent performance of the1; method described by Fuller et al., 1999).

ately instrument. Procedural blanks were analyzed as an Jaffe eta!. (1998) reconstructed depositional pro-
Ten unknown, but no blank subtraction was necessary, cesses at SP90-8 by comparing five detailed

~tt~c The instrument limit of detection (LOD) and Limit of bathymetry surveys conducted since 1850. A discon-
’xl on quantitation (LOQ) were determined by 10 or moretinuity in chemical concentrations observed at ~ 120
ature analyses of a standard blank (0.6 N HC1) throughoutcm depth in this core appears to coincide with a
2 for each analytical run (Keith et al., 1983). All datadepositional hiatus that extended from 1880 to 1950.
were reported here fall above the LOQ. If readings fromBoth depositional history and Sr/Nd isotopic signa-

C--0341 64
(3-034164



Table 2
Range of recoveries for Standard Reference Material (Estuarine Sediment Standard, SRM 1646 and San Joaquin River Sediment, SRM 2709)

Ag * A1 Cr Cu * Fe Hg Mn Ni Pb V Zn

SRM 2709 Certified 0.415:0.03 7.5+0.06 130-t-4 34.65:0.7 3.5:t:0.1 1.40+0.08 538+17 885:5 18.95:0.5 112+5 1065:3
ttNO3 (n = 24) Measured 0.35+0.05 3.6+0.4 815:4 28_+2 2.95:0.1 1.40+0.06 484+23 745:3 11.55:0.6 79_+6 93+4
SRM 1646 Certified - 6.3±0.2 76_+3 185:3 3.45:0.1 - 3755:20 325:3 28.25:1.8 945:1 138_+6
HNO3 (n=20) Measured - 2.45:0.4 445:3 145:2 2.55:0.1 - 2525:14 255:1 24.55:3.4 55::1:8 1225:10
HF(n=6) Measured - 5.85:0.2 655:2 15.3+6 3.1-t-0.1 - 3385:8 285:1 na 925:4 135+2

A1 and Fe (*) are reported by percent weight. All other elements are reported in Izg/g. Recoveries for near-total (HNO3) and totat (HF) digests are reported. Lead
concentrations for the HF digest were not analyzed (see text). There are no certified values for Ag or Hg in SRM 1646.
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tures suggest sediments between 150-250 cm origi- Aluminum vs. Chromium
nated from hydraulic mining activities and were 200

deposited between 1850 and 1880 (Bouse et al.,
1996; Jaffe et al., 1998). Thus, sediments deposited
before 1850 lie directly beneath sediments deposited 150

in the 1950s.
Inventories of ’excess’ metal (mass per area de-

~ 100
posited in excess of baseline) were determined in
GB90-6, SP90-8 and RB92-3 by integrating contami-
nant metal inputs downcore. The ixg/cm2 of metal 5o
in interval a (M~) was determined by:

Ma = ( C~ - B) pz AZ                 (1)
0

where Ca is the metal concentration in Ixg/g in 0 2 4 6 8 10
interval a, B is the baseline metal concentration that Aluminum (%
occurred before anthropogenic activities began in the
watershed (see later discussion), Pz is the bulk den-
sity of the sediment, and z is interval thickness in Aluminum vs. Vanadium
cm. Fuller et al. (1999) reported Pz for each horizon 200

in RB92-3; an average bulk density of 1.1 g/cm2

was used for SP90-8 and GB90-6. The integrated 150inventory for sediments (~b) was determined by:

q5 = E(C~_z - B),                 (2)
100

for all intervals. Intervals not sampled were assigned
values by linear interpolation of the concentration
(mass of metal per gram) of adjacent intervals. 50
Long-term mean excess metal flux, ~b, was com-
pared among cores with different sedimentation rates.
To do so, q5 was divided by the number of years of 0
excess metal input (e.g., normalized to the period of 0 2 4 5 8 10
human disturbance) using age estimates from Fuller Aluminum (% wt)
et al. (1999).

Fig. 2. Correlations between V and Cr concentrations (p.g/g) and
A1 (% weight). Closed circles represent sediment data using the
near total, concentrated nitric digestion technique (HNO3, < 64

3. Results ~m). Open squares show sediment data ushag the total decomposi-
tion (I-IF, < 64 p.m).

3.1. Decomposition methods

Total decomposition and nitric acid reflux were reflected the more efficient recoveries in the total
compared in order to determine if trends were biaseddigest. The slope and the strength (R2) of the rela-
by the decomposition method. Concentrations of Cr, tionships were similar between the digests. Thus,
V, Fe and A1 (metals often associated with mineral internally consistent trends among the three metals
lattice structures) were higher in the total digestscharacterized both digests. Because results from the
than in the concentrated nitric acid digests (Table 2). nitric acid digests were as consistent among all
Concentrations of Cr and V in both digests were sediments as results from total decomposition, either
strongly correlated with A1 (Fig. 2; p < 0.001). The approach appeared suitable for defining trends within
differences in y-intercept of the two relationships and among cores.
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3.2. General core features H g

0,00 0.50 I .IX)All cores showed distinct contrasts in metal com- 0
position between uncontaminated intervals and inter-
vals deposited after chemical disturbance of the sedi- --- -50
ments by human activities. Sediments from Tomales
Bay (TB93-1), which has little history of contami-
nant input, showed a slight surface enrichment of Cu B £ ,00

and Zn (20-28 I~g/g and 70-85 t~g/g, respec-
tively) and slightly elevated Hg concentrations (0.1- .1~0

0.4 Izg/g) through most of the core compared to the
deepest horizons. No other significant downcore
trends in metal concentrations were present (Figs. 3

0.00 0.50 1.00
and 4). Concentrations of Cu, Ag, Hg, Pb and Zn, in 0 "
the deepest horizons of the San Francisco Bay cores,

-~o "~’*’~" .........were comparable to concentrations in uncontami-
2k-...~ ........nated horizons of TB93-1 (Figs. 3 and 4). A diffuse

maxima in concentrations of these metals occurred
1963

toward the surface layers of the San Francisco Bay SP
cores. Differences were statistically significant (one-
way ANOVA: p < 0.01) between concentrations in
sediments deposited before 1910 (RB92-3) or before ¯ ,
1952 (GB90-6; SP90-8; CB90-12), compared to sed- -~5o

iments deposited after 1910 (in RB92-3) or 1952
0.00      0.60      1.00 o 9o_o;

A second group of metals for which anthro-
pogenic sources exist (Cr, V and Ni), showed little ..~ ...........
evidence of enrichment toward the surface of the ~,~ -r~f~. t
cores (Fig. 5). Concentrations of Cr, V and Ni were RB [,f .............. ,o10similar throughout the length of most cores, and

~ .’too
were similar to concentrations in Tomales Bay (Ta-
ble 3). Layers of enriched Fe and Mn concentrations,
as might be expected under conditions of diagenetic

-150metal remobilization, were not evident near the sur-
face of any cores. The coefficient of variation (CV) pglg dry weight
for mean Fe concentrations within cores was < 20%;

Fig. 4. Downcore trends of Hg for Grizzly Bay (GB), San Pablo
the CV for Mn within cores was < 30% (Table 3).Bay (SP) and Richardson Bay (RB). Horizontal dotted line repre-
SP90-8 contained interbedded layers of sand and siltsents the maximum depth of 137Cs penetration or minimum age of
and RB92-3 contained variable amounts of sandsediment horizon as determined by age dating model (Fuller et al.,
(15-60%) (see Fuller et al., 1999; van Geen and1999). Vertical dashed line for each graph represents metal con-

Luoma, 1999 for details). The effects of variations incentration in the reference estuary, Tomales Bay. All data reported
in p.g/g city weight in sieved sediments ( < 64 t~m).particle size on metal concentrations were removed

after the sediments were sieved, as indicated by the
absence of vertical trends in A1 concentrations withintad

~ed the < 64 ptm sediments (Fig. 5). Organic carbon3.3. Specific spatial and temporal patterns
~, concentrations were similar throughout the RB92-3
o3 core but were higher in the upper 120 cm of SP90-8 Spatial differences in core characteristics were

than in deeper horizons (Pereira et al., 1999). indicative of heterogeneous depositional processes in

C--0341 68
C-034168



48 M.L Hornberger et al. / Marine Chemistry 64 (1999) 39-55
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Fig. 5. Downcore trends in non-contaminant profiles for San PabIo Bay (SP); Central Bay (CB); and Richardson Bay (RB). Chromium, Ni Ag ba
and V are reported in l~g/g dry weight. Aluminum is reported by percent weight. All analyses conducted on sieved sediments ( < 64 i~m).baseli~
Scatter plot represents the mean concentration (F12%103 diges0 of two samples and the error bar represents the standard deviation. Line plot0.06 q-
represents the concentration by total decomposition (t-IF digest). Pb an~

zons (
P~g/g.

the Bay. Among the 14 cores initially screened,SP90-8 had higher concentrations of Al, Cr, V, Fe sedim~
some cores were contaminated throughout (1-2 mand Mn than did the cores from the more seaward of Zn
depth); while metal concentrations in the entire length locations (CB and RB cores) (Table 3; Fig. 5). This ( > 10t
of others were similar to the lowest concentrations could reflect particle sorting, or a declining abun- the de
found in the Bay sediments, suggesting these weredance of clays from landward to seaward in the Bay, Tht
areas of little net sediment deposition (Fig. 1). Among although local areas of f’me particle deposition prob- tion ir
the six cores analyzed in detail, GB90-6, SP90-2 andably also occur. In CB90-12 and CB90-9, concentra- conce~

C--0341 69
C-034169



M.L Hornberger et al. f Marine Chemistry 64 (1999) 39-55 49

Table 3
Mean concentrations of A1, Cr, Fe, Mn, Ni and V in bulk sediments (total decomposition) and < 64 p.m sieved sediments (nitric acid
refluxed) from San Francisco and Tomales Bay cores

AI (%) Cr (~.g/g) Fe (%) Mn (~g/g) Ni (Ixg/g) V (~,g/g)

Total decomposition (bulk sediments)
GB90~6 na na na na na na
SP90-8 8.2 + 0.9 143 5:13 4.5 5:0.4 639 5:114 103 5:!5 170 5:19
CB90-12 7.1 ± 0.3 131 + 12 3.9 + 0.2 377 ± 28 85.3 ± 7.6 136 5:9
RB92-3 6.4 5:0.3 113 + 8 3.5 ± 0.2 378 + 32 73.3 5:4.1 117 _+ 7
TB93-! 6.5 5:0.4 150 5:8 3.7 ± 0.3 324 5:21 116 + 11 74.4 _+ 4.4

Nitric acid d!gest (sieved sediments)
GB90-6 4.7 +_ 0.6 1 !2 5:12 4.3 ± 0.9 573 __. 179 105 ± 11 104 ::k l0
SP90-2, 5.7 + 1.2 121 + 17 4.4 ± 0.5 528 5:126 102 5:16 119 5:17
SP90-8 4.7 + 0.6 105 + 13 4.0 + 0.4 501 ± 156 94.1 5:20 101 5:9
CB90-9. 4.0 5:0.5 104 ± 11 3.8 ± 0.5 315 5:30 86.2 + 7.2 87.2 ± 9,6
CB90-12 3.7 + 0.5 100 + 13 3°7 5:0.6 291 __. 18 85.0 ± 9.1 80.8 5:11
RB92-3 3.9 5:0.7 101 _+ 14 3.7 ___ 0.3 305 5:22 81.2 _+ 5.3 86.0 5:14.6
TB93-1 3.5 ± 0.3 123 +_ 7 3.4 5:0.2 305 5:17 116 5:11 74.4 ± 4,4

Replicate cores are marked with an asterisk. Total decomposition analysis was not conducted on core GB90-6.

tions of A1, Cr, Ni and V were all enriched in posited between 1850 and 1880 in SP90-8 (Fig. 4).
horizons toward the surface (Fig. 5), in contrast toElevated Hg concentrations were not observed at
profiles of these metals from other regions. RB92-3 until horizons deposited between 1910 and

Baseline concentrations of Ag, Cu, Hg, Pb and Zn 1925. Increases in concentrations of Cu, Pb and Zn
were estimated from comparisons with Tomales Bayin RB92-3 were also not evident before 1910. Con-
sediments and from the deepest horizons of RB92-3 centrations of Cu and Zn in Richardson Bay sedi-
and GB90-6. Concentrations of Cu in the deep hori- merits have not declined substantially since the 1940s
zons of all cores ranged from 16 to 55 g,g/g and
decreased from GB90-6 to RB92-3. Among these

Oopper vs. Aluminum
data, Cu was strongly correlated with A1 (R2 = 0.80;

100Fig. 6). Thus, baseline Cu was determined by com-
parison with A1 concentration in each horizon and
contamination was distinguished as positive residuals 75
from the relationship of Cu and AI (Fig. 6). Baseline ~
concentrations of Ag, Pb and Hg were more uniform. ~ 50

m, Ni
Ag baseline concentrations were 0.09 +- 0,02 ~xg/g; ~

~.m). baseline Pb was 5.2 + 0.7 tzg/g; and baseline Hg
~. plot 0.06 + 0.01 txg/g (Figs, 3 and 4). Concentrations of 25

Pb and Hg were slightly enriched in the deep hori-
zons (> 115 cm, 10.4 +- 1.7 I-~g/g, and 0.35 +_0.03              0

. I-~g/g, respectively) of SP90-8 and SP90-2, but these 0 2 4 6 8 10
*, Fe sediments were deposited after 1850. Concentrations

Aluminum (% wt)_Ward of Zn were also high in the deepest layers of GBg0-6
This (> 100 cm, 94 +__ 6 ~g/g), but averaged 78 +- 7 inFig. 6. Correlation between AI (% weight) and Cu (l-~g/g)

ibun- the deepest layers of other cores, including TB93-1. concentrations for near total (HNO3) digests in sediments de-

Bay, The earliest detectable anthropogenic contamina-posited before 1952 (baseline). Closed circles represent concentra-
lions below the 137Cs boundary (R2 = 0.80). Open circles repre-

bmb- tion in San Francisco Bay was the elevation of Hg sent concentrations in horizons that contain 137Cs and have been
~tm- concentrations to 0.3-0.4 txg/g in sediments de-deposited since 1952.
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Fig. 7. Metal concentrations plotted as a function of enricbaxtent factors in Ag (closed circle), Fig (closed square) and Pb (closed triartgle),
f’deEnrichment factors (EF) are calculated by dividing the concentration in horizon ’i’ by the mean baseline concentration. Horizontal dotted

line represents the maximum depth of ~37Cs penetration or minimum age of sediment horizon as determined by age dating model (Fuller etdet:
al., 1999). mix

(F.
pog
illei-

and Pb concentrations have declined little, although     similarities within a given geographic region. EFs forcant
variability occurs among horizons. In contrast, maxi- Hg and Pb in the subsurface peak in GB90-6 were bet;,
mum concentrations of Ag, Cu, Hg, Pb, and Zn in the highest in the Bay (20 and 10 times baseline, pari:
SP90-8, SP90-2 and GB90-6 occurred in the subsur-respectively). EFs for Hg and Pb were also high in prot
face, and concentrations have declined in recentSP90-8 (15 and 7 time baseline, respectively) and the,
decades, but not to the levels that occurred beforedecreases in enrichment factors after 1970 character- 199’5
1850. ized both GB90-6 and SP90-8 (Fig. 7). Lead enrich- size

Using the baseline concentrations described above,ment in CB90-12 and RB92-3 were lower than val- follo
enrichment factors (EF) (Alexander et al., 1993; ues observed in the North Bay cores, (a range from of m
Valette-Silver, 1993) were calculated for all horizons 5-10 times baseline), as was Hg, (five times higher Valei
in each core from: in RB92-3; Hg not measured in CB90-12) (Fig. 7). when

Silver enrichment throughout the bay ranged from erlunEF = Ci/C~ (3) 2-7 times higher than baseline, with decreasing en- not s
where C, was the concentration in horizon i and Cr richment occurring since the 1970s (Fig. 7). Copper M
was the baseline value. Although enrichment factorsand Zn enrichment averaged 2-3 times higher than indus
for metals were highly variable baywide, there were baseline concentrations at all sites (data not shown), sed~

(Chri
most

Table 4 the o~

Deposition rate of metal accumulation in three cores collected in San Francisco Bay I!,

Grizzly Bay (GB90-6) San Pablo Bay (SP90-8) Richardson Bay (RB92-3) (Vale

izg/(cm2 yr) i/,g/(cm2 yr) p.g/(cm2 yr) ing rt

Ag 0.74 1.2 0.28 least
Cu 61.9 92.5 16.6 wher~
Hg 1.49 1.I 0.2 baseli
Pb 65.9 75.2 17.8 Calle~
Zn 128 168 61. i enric[

See Section 2 for description of inventory calculations, ences
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Deposition rates of Ag, Cu, Pb and Zn were tribute to differences in recovery rates among loca-
greatest in SP90-8 (Table 4). The highest rate of Hgtions.
deposition occurred at GB90-6. A gradient in metal Copper and Zn are only moderately enriched in
deposition rates was evident from landward to sea-San Francisco Bay sediments. EFs for these metals
ward (GB90-6 to RB92-3) among the cores, with theare less than observed near the head of Narragansett
lowest rates occurring at the mouth of the estuary Bay, where contamination is extreme (Bricker, 1996),
(Table 4). but are similar to Southern California coastal waters

(Finney and Huh, 1989) and an industrialized estuary
in Texas (Ravichandran et al., 1995).

EFs for Hg are high in San Francisco Bay. Ras-
4. Discussion mussen (1994) argued that the contribution of an-

thropogenic inputs to Hg concentrations in aquatic
Anthropogenic inputs of metals between 1850 andenvironments are difficult to determine because natu-

the present are the simplest explanation for the pro-ral concentrations vary from 0.01-0.3 Ixg/g. How-
9. files of Ag, Cu, Hg, Pb and Zn in cores fromever, baseline concentrations of Hg (0.06 + 0.01

et depositional areas in San Francisco Bay. The strongly txg/g) are not highly variable in San Francisco Bay,
mixed sediment colunm documented at RB92-3despite some of the richest geologic deposits of Hg
(Fuller et al., 1999), did not obscure the anthro-in the world in the watershed (Nriagu, 1994). Mining
pogenic enrichment. Alternative causes of enrich-contaminated Bay sediments with Hg, perhaps as
merit (Crusius and Anderson, 1991; Farmer, 1991)early as 1850. Mercury was extracted from mines in

~r cannot explain the metal profiles or the differencesthe Bay watershed, at an average rate of 1290 ton/yr,
~ between San Francisco Bay and Tomales Bay. Com-between 1850 and 1900 (Nriagu, 1994). Most of this
~, parison with box cores indicate that gravity core Hg was used to amalgamate and extract gold in the
n profiles were not affected by compression or loss ofhydraulic mining processes employed in the Sierra
d the near surface sediment during coring (Fuller et al.,Nevada between 1852 and 1884. Historic accounts
i- 1999). Sieving appeared to eliminate most particle(Nriagu, 1994) estimate that 25-30% of the Hg used
t- size effects. Concentrations of Fe and Mn did not in gold mining was lost in waste water or to soils.
t- follow patterns indicative of diagenetic redistribution The hydraulic mining also released 1.2 × 109 m3 of
n of metals (Ridgway and Price, 1987; Farmer, 1991;sediment, much of which was deposited in San
’~ Valette-Silver, 1993). Metal loss from sedimentsFrancisco Bay (Gilbert, 1917). If 40,000 ton of Hg
|" when they resided at the oxidized surface (West-were used in gold mining and 25% was left associ-
u erlund et al., 1986) cannot be discounted, but it wasated with sediments, then as much as 10,000 ton of
¯ - not sufficient to eliminate the metal profiles. Hg could have been transported to the Bay with
:r Most of the metal contamination associated with hydraulic mining sediments. The highest concentra-
a industrialization appeared later in San Francisco Baytion of Hg in the Bay sediments (0.95 ~g/g in
L sediments than in Europe or eastern North AmericaGB90-6) was deposited after most hydraulic mining

(Christensen and Goetz, 1987; Bricker, 1993). Theinputs to the Bay had ceased (but mercury mines
most enriched concentrations of metals occurred with were still operative). Maximum Hg levels buried in
the onset of rapid industrial growth after World War Bay sediments are below the extreme contamination
II, as is typical of industrialized ecosystems associated with industrial activities (Smith and Lor-

- (Valette-Silver, 1993). A ’recovery phase’ of declin-ing, 1981), but are five times the geometric mean
ing metal concentrations began in the late 1970s atconcentration in US coastal sediments (Daskalalds

- least at some locations for some metals. Like else-and O’Connor, 1995) and exceed the level (0.7
where, metal concentrations have not declined to~g/g) predicted to cause adverse biological effects
baseline values (Valette-Silver, 1993; Huh, 1996;in benthic fauna (Long et al., 1995). Spatial trends in
Callendar and Van Metre, 1997). Differences inpeak Hg concentrations and inventories in sediments

.~ enrichment factors, proximity to input and differ- point to a historic source in the watershed (the
ences in local mixing/sedimentation regimes con-mines); however, concentrations in surface sediments
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were relatively uniform among the different cores in Huh, 1996). Trends in Ag concentrations closely
1990 (0.3-0.4 Ixg/g). Thus, inputs from the head of follow trends in Pb concentrations in the North Bay
the estuary may not be as dominant as they oncecores, raising the possibility that Ag co-occurs with
were (Fuller et al., 1999). Pb in smelter wastes. Silver concentrations among all

Concentrations of Pb buried in San Francisco Baycores show a nearly 1 : 1 relationship with Pb, espe-
sediments are not among the highest found in UScially in sediments deposited before 1952, while the
coastal sediments (Daskalakis and O’Connor, 1995),Pb smelter was still active (Fig. 8). After 1952, Ag
Southern California (Finney and Huh, 1989), otherconcentrations are greater than would be expected
industrialized estuaries (Rozan et al., 1994; Bricker,from the Ag/Pb relationship in sediments deposited
1996), or urban reservoirs (Callendar and Van Metre, when the Pb smelter was most influential in San
1997). Callendar and Van Metre (1997) suggest that Pablo Bay (Fig. 8; see also Ritson et al., 1999). The
atmospheric Pb deposition in urban areas was 14.5relatively recent maxima in Ag concentrations in the
Ixg/(cm" yr) for the years 1965-1975, with declin- Central and Richardson Bay sediments thus may
ing rates thereafter. This is similar to the long-term reflect a modem increase in Ag inputs, followed by
average rate of deposition in Richardson Bay (17.8 some recovery (Fig. 3). A similar, recent peak in Ag
p~g/(cm2 yr)). On the other hand, long-term invert- concentrations, compared to other metals, was also
tories of Pb in San Pablo and Grizzly Bay (75.2 andobserved in Puget Sound (Bloom and Crecelius,
65.9 Ixg/(cm" yr), respectively)exceed those found 1987). Thus, a second source of Ag, perhaps the
in all but the most polluted of the above circum- South Bay source, may have enriched Central and
stances. Thus, the high sedimentation rates in NorthRichardson Bay sediments within the last two
San Francisco Bay may have diluted substantial localdecades, as other metal concentrations were stabi-
Pb inputs. The isotopic signature of Pb in SP90-8,lized or declining.
clearly shows a signal consistent with large inputs Interpretation of metal concentrations in estuarine
from the Selby Pb smelter (Ritson et al., 1999). sediments must consider the geology of the water-
Documented Pb releases from the smelter were ~ 16 shed (Gobiel et al., 1995). Erosion from the water-
T/yr of Pb between 1900 and 1970 (Rabinowitz and shed is most likely the dominant sources of Cr, V
Wetherill, 1972), compared to Pb releases of 18and Ni in San Francisco Bay. Concentrations of
T/yr from the 50 known industrial and municipal these metals, especially Ni, are high throughout the
discharges in 1990 (Gunther et al., 1987). Isotope
signatures also suggest the effects of the smelter
could have been highly influential over a broad area Silver vs. Lead
of San Francisco Bay (Ritson et al., 1999). 0.80
Widespread recovery from Pb contamination is re-
ported in sediments from systems dominated by at- 0.60
mospheric inputs (Smith and Flegal, 1995; Callendar ~and Van Metre, 1997). In San Francisco Bay, it is ~ 0.40
possible that recovery will be delayed if smelter Pb ~
is still being redistributed in the estuary. 0.20Silver is a modem contaminant of interest because
of its association with sewage discharges. Silver
contamination has been reported from South Bay 0"000 20    40    60 80
since the 1970s (Thomson et al., 1984; Luoma and
Phillips, 1988; Smith and Flegal, 1995). The highest [Pb] pg/g

Ag concentrations in San Francisco Bay cores areFig. 8. Relationship between Ag and Pb concentrations (HNO3,
similar to the highest concentrations found in central < 64 p.ra) at all depths from Grizzly Bay, San Pablo Bay, Central

Bay and Richardson Bay. Open symbols are sediment horizonsPuget Sound, but are less than the highest Ag con-
deposited after 1952; closed symbols are sediments deposited

centrations found in some other coastal systemsbefore 1952. The line is a 1:1 linear relationship between Ag and
(Daskalakis and O’Connor, 1995; Bricker, 1996; l~b.
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length of all cores, compared to many other coastal inflows and gravitational circulation would aid mix-
ecosystems (Campbell and Loring, 1980; Katz andhag and perhaps particle sorting in a shallow estuary
Kaplan, 1981). For example, 42 p.g/g was desig-like San Francisco Bay (Conomos, 1979). Mixing
nated as the ’high’ concentration of Ni (geometriccan also be affected by human activities. A shift in
mean plus one standard deviation) in US Coastalthe contribution of sediment sources, rather than
sediments (Daskalakis and O’Connor, 1995). Nickel industrial pollution, may be the best explanation for
concentrations in the Gulf of Mexico coast do not the enrichment of Cr and V toward the surface of
exceed 50 ~g/g, with the highest concentrationsCentral Bay cores because concentrations of A1
occurring with A1 concentrations of 8-10% changed coincidentally with Cr and V in those cores
(Summers et al., 1996). Nickel concentrations in our(Fig. 5). Krone (1996) concluded that the upper or
cores ranged from 70-200 tzg/g, and exceeded Gulflandward bays are not trapping sediment as effec-
Coast Ni concentrations by a factor of 2 or more at tively as they were before 1950, and consequently
similar AI concentrations. Greywackes and ultra- greater amounts of sediment are being transported
mafic rocks, such as serpentine, are predominant intoward the Golden Gate. This suggests that more
the Franciscan Formation that surrounds the Bay. fine-grained sediments may be depositing in Central
Ultramafics can contain as much as 2000 p~g/g Ni Bay than in the past. Causes of these changes could
and Cr, and greywackes > 150 p~g/g V (Taylor and include a smaller Bay volume in the upper Bays
McLennan, 1985). Inputs of Cr, Ni and V from oil (Krone, 1996), a change in residence times in the
ref’meries and a steel mill in San Pablo and Suisunestuary induced by freshwater diversion (D. Schoell-
Bays (Gunther et al., 1987; Luoma et al., 1990; hamer, USGS, personal communication), or incorpo-
Brown and Luoma, 1995; Abu-Saba and Flegel,ration into the Central Bay of dredge spoils from the
1995) do not appear to affect sediment concentra- f’mer grained sediments of North Bay.
fions of these metals. Perhaps the oxidation states of
locally discharged Cr and V is not conducive to
adsorption to particle surfaces (Abu-Saba and Flegel,
1995); or the high natural baseline might confoundAcknowledgements
detection of industrial influences.
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